
Effect of microstructure on the saturation of swelling in irradiated materials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 L9

(http://iopscience.iop.org/0953-8984/13/1/102)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 08:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) L9–L16 www.iop.org/Journals/cm PII: S0953-8984(01)18788-6

LETTER TO THE EDITOR

Effect of microstructure on the saturation of swelling
in irradiated materials

S L Dudarev

EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire
OX14 3DB, UK

Received 7 November 2000

Abstract
The interaction of cavities with mobile interstitial clusters is believed to be
responsible for the saturation of swelling in irradiated materials. We show
that the saturation limit depends on the microstructure of the material, and
that the origin of the effect is associated with the violation of the low-density
approximation in the case of scattering of one-dimensionally moving interstitial
clusters by grain boundaries. For large grains, swelling is enhanced near the
boundaries, while for small grains swelling is maximum in the grain interior.
The maximum size of cavities corresponding to the saturation of swelling is
found to be many times the mean-field estimate.

1. Introduction

Clustering of vacancies and interstitial atoms in collision cascades represents an important
element of the kinetics of microstructural evolution of irradiated materials [1–3]. The part
played by mobile and immobile interstitial clusters [4], fluctuation effects [5], the anisotropy
of diffusion coefficients [6] and the saturation of swelling [7] are among issues that are believed
to be fundamentally important for understanding the behaviour of structural materials in the
limit of a high irradiation dose [8, 9].

The existing treatment of interactions between mobile interstitial clusters and lattice
defects is based on the mean-field approach, where the effective range of motion of clusters in
the material is characterized by the mean free path l, where

l ∼ (Nva2)−1 (1)

in the case of scattering by cavities, and

l ∼ (ρd)−1 (2)

in the case of scattering by dislocation lines [10]. In equation (1) Nv is the volume density
of cavities and a is their radius, and in equation (2) ρ is the density of dislocation lines and
d is the distance characterizing the effective range of interaction between a mobile interstitial
cluster and a dislocation. To describe collisions between mobile and immobile defects in a
material using the notion of the mean free path l, we assume that this parameter is many times
the average distance between scatterers [11], i.e. (Nva2)−1 � N

−1/3
v and (ρd)−1 � ρ−1/2.
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These inequalities are equivalent to the condition that the average density of scattering centres
is low Nv � a−3 and ρ � d−2.

In the case of scattering of mobile interstitial clusters by grain boundaries the low-density
approximation is not satisfied. Indeed, in this case an expression analogous to (1) and (2) has
the form

l ∼ N−1
gb ∼ Rg (3)

where Rg is the average size of grains, and the condition of validity of the low-density
approximation lNgb � 1 is violated.

In the case of three-dimensional motion of particles the condition of validity of the low-
density approximation is equivalent to the condition that the number of scattering centres in the
volume of the order of l3 is large, and this justifies the mean-field treatment of the problem. The
breakdown of the low-density approximation in the case of scattering of one-dimensionally
moving clusters by grain boundaries means that considerable deviations from the mean-field
picture are likely to occur. The analysis given below confirms this conclusion. In this letter we
investigate solutions of equations describing the growth of cavities in an irradiated material.
These solutions show that in the presence of grain boundaries the spatial distribution of growing
cavities becomes highly inhomogeneous and that the maximum size of cavities corresponding
to the saturation of swelling exceeds many times the value calculated using the mean-field
approach.

2. The model of growth

Consider a cavity growing in a material irradiated by high-energy neutrons. Point defects
and mobile defect clusters formed in collision cascades arrive at the surface of the cavity and
make it shrink or grow. The rate of arrival of defects depends on their transport properties,
which are radically different for point defects and mobile defect clusters. Single vacancies and
interstitial atoms perform three-dimensional diffusional motion in the crystal lattice and their
contribution to the rate of variation of the cavity radius a(r, t) is given by [12][

da(r, t)

dt

]
point defects

= 1

a(r, t)
[Dvcv(r, t)−Dici(r, t)] (4)

where Dv and Di are diffusion coefficients for vacancies and interstitials, and cv(r, t) and
ci(r, t) are concentrations of point defects. Clusters of interstitial atoms perform one-
dimensional diffusional glide [1] and their contribution to the rate of growth is given by[

da(r, t)

dt

]
interst. clusters

= − Kε
4M

M∑
k=1

〈�k〉 (5)

where K = GNRT(1 − εr) is the effective defect generation rate and ε is the cluster formation
ratio. Summation over k is performed over directions of one-dimensional motion of clusters in
the crystal lattice (i.e. over eight directions of the 〈111〉 type in the bcc lattice and over twelve
directions of the 〈110〉 type in the fcc lattice), and 〈�k〉 is the average distance to the nearest
scatterer situated on a straight line passing through the centre of the cavity and going in the
direction k.

Figure 1 illustrates the derivation of equation (5). The concentration of interstitial atoms
performing one-dimensional Brownian motion as a part of a mobile cluster on an interval
between two sinks situated at �L and �R equals C(�) = (Kc/2Dc)(� − �L)(�R − �),
where � is the coordinate in the direction of the glide and Dc is the effective diffusion
coefficient. The flux of interstitial atoms absorbed by the sink situated at �L is equal to
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Figure 1. Sketch illustrating the meaning of equation (5). This sketch shows the (001) cross-section
of a spherical grain in a fcc crystalline material. In this figure the interstitial clusters moving in
the 〈110〉 or in the 〈11̄0〉 directions are absorbed by the growing cavity or by the grain boundary.
Clusters moving in the 〈1̄1̄0〉 direction are absorbed by either of the two cavities. Clusters moving
in the 〈1̄10〉 direction are absorbed by either the cavity or by a dislocation.

Jc = −DcC ′(�L) = Kc(�R −�L)/2, where Kc = Kεs⊥a−3
0 M−1. In this expression a0 is

the lattice constant and s⊥ is the area of the projection of the Wigner–Seitz cell on the direction
of one-dimensional motion. The rate of variation of the number N of vacancies in a cavity is
proportional to the total current of interstitials carried by mobile interstitial clusters

dN
dt

= −〈Jc〉πa
2(r, t)

s⊥
. (6)

Taking into account that N is related to the radius of cavity a(r, t) via Na3
0 = (4π/3)a3(r, t),

we obtain equation (5).
To find the average distance to the nearest scatterer 〈�k〉 we need to integrate � with the

nearest-neighbour probability distribution Pk(�, r). This distribution gives the probability of
finding a scatterer which is the nearest to a given point r and is situated on a straight line
passing through r in the direction defined by the unit vector ek . Function Pk(�, r) satisfies
equation [13]

Pk(�, r) =

1 −

�∫
0

Pk(�
′, r)d�′


 n(r +�ek) (7)

where n(r +�ek) is the linear density of scatterers. The solution of (7) is

Pk(�, r) = n(r +�ek) exp


−

�∫
0

d�′n(r +�′ek)


 . (8)
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In the case of a spatially homogeneous distribution of cavities and dislocations the linear
density of scatterers is given by n = πρd/4 +πNva2. The average distance 〈�〉 to the nearest
scatterer in this case is independent of ek

〈�〉 =
∞∫

0

�P(�, r)d� = 1
π

4
ρd + πNva

2
. (9)

Substituting this in (4) and (5) we arrive at (see equation (5) in [10])
da(t)

dt
= Kε

a(t)[ρ + 4πNva(t)]
− Kε

πρd + 4πNva2(t)
(10)

where it is taken into account that for randomly distributed cavities and dislocations the excess
flux of vacancies to the cavity is given byDvcv(t)−Dici(t) = Kε[ρ+4πNva(t)]−1. Solutions
of equation (10) satisfying the initial condition a(0) = a0 � d saturate in the limit t → ∞ at
amax = πd .

3. Analysis of the model

In the case where the motion of a mobile cluster is restricted by the grain boundary, which
intersects the line of motion of the cluster at a certain point �g (see figure 2), the nearest-
neighbour probability distribution has the form

Pk(�, r) = n(r +�ek) exp


−

�∫
0

d�′n(r +�′ek)




= + δ(�−�g) exp


−

�g∫
0

d�′n(r +�′ek)


 . (11)

This probability distribution is defined on the interval 0 � � � �g . The presence of the
second term in the right-hand side of equation (11) has a simple meaning: the grain boundary
restricts the range of motion of the cluster so that it cannot pass through the boundary into
the adjacent grain. Note that equation (11) does not involve calculating averages over the
position of the grain boundary. Given condition (3), a calculation of this type would encounter
difficulties associated with the summation of a divergent series of terms, see e.g. [14].

In the following we apply (11) to the analysis of the linear problem of the growth a cavity
in a grain. We assume that the densityNv of cavities satisfies inequality 4π2Nvd � ρ. In this
case dislocations and grain boundaries represent dominant sinks for mobile defects and effects
associated with the absorption of mobile defects by other cavities can be neglected. Equation
(10) shows that this approximation is not going to influence the limit of saturation of cavity
growth, which in accordance with (10) is independent of the volume density of cavities. A
similar conclusion also follows from the analysis of the problem of the growth of cavities in
the vicinity of a planar grain boundary given in [15].

Consider a spherical grain of radius Rg . The function  (r) = Dvcv(r) − Dici(r),
describing the diffusion of point defects, satisfies the equation

1

r2

d

dr

(
r2 d

dr
 (r)

)
+Kε − ρ (r) = 0 (12)

the solution of which, subject to the boundary condition  (Rg) = 0, is

 (r) = Kε

ρ

[
1 − Rg

r

sinh(
√
ρr)

sinh(
√
ρRg)

]
. (13)
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Figure 2. Dependence of the saturation radius amax(r) on the distance r from the centre of a
spherical grain calculated using equation (14) for a bcc (M = 8) crystal. Parameters used in the
calculation were ρ = 109 cm−2, d = 50 Å. The coordinates of the cavity r are related to the
distance r from the centre of the grain via r = (r, 0, 0).

A straight line passing through the point r in the direction ek , intersects with the grain boundary
at points

r1,2 = r + ek[(r · ek)±
√
R2
g − (r × ek)2].

Substituting this expression in equation (11) and equations (4) and (5), we obtain that the cavity
saturation radius depends on the distance r from the centre of the grain and is given by

amax(r) = πd
1 − Rg

r

sinh(
√
ρr)

sinh(
√
ρRg)

1

M
M∑
k=1

[
1 − exp

(
−π

4
ρd

∣∣∣(r · ek) +
√
R2
g − (r × ek)2

∣∣∣)] . (14)

Figure 2 shows the saturation radius amax(r) calculated using equation (14) for several values
of Rg and plotted as a function of the distance from the centre of the grain. The density of
dislocation linesρ is assumed to remain the same for all the curves shown in figure 2. This figure
shows a transition between the case where the diffusion of point defects dominates the kinetics
of growth (Rg � (ρd)−1), and the case where the shape of the profile is determined by the
interaction between cavities and mobile interstitial clusters (Rg � (ρd)−1). In the case of small
grains the shape of the profile is similar to the one obtained in [16] using the standard rate theory.
The similarity between the two cases is not surprising since the kinetic of growth of cavities in
small grains is dominated by the diffusion of point defects. In the case of relatively large grains
the situation is entirely different. Cavities growing in the interior region of large grains are
not affected by processes occurring at grain boundaries, and their saturation radius is equal to
the mean-field value πd . Function amax(r) in the case of large grains is maximum at distance
∼ ρ−1/2 from grain boundaries, where cavities are able to reach the size amax ≈ 2πd, which is
two times greater than the size corresponding to the saturation of swelling in the grain interior.
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Figure 3. Cross-sections of grains of three different sizes showing the distribution of the saturation
radius amax(r) plotted as a function of the position of the cavity in a grain. Each of the three plots
shows a cross-section of the grain in the (001) plane. The size of the grain shown in (a) is Rg = 1
micron, the size of the grain shown in (b) is Rg = 3 micron and the size of the grain shown in (c) is
Rg = 30 micron. The distributions are plotted in reduced coordinates (x/Rg, y/Rg). Calculations
were performed assuming the bcc crystal lattice and ρ = 109 cm−2.

Figure 3, calculated using equation (14), shows two-dimensional cross-sections of grains
of three different sizes illustrating the dependence of the spatial distribution of cavity saturation
radii on the size of the grain. For the relatively small grain shown in figure 3(a) the cavity
saturation radius is maximum at the centre of the grain. For the large grain (c), cavities
reach maximum size (which is this case equals approximately amax ≈ 2.8πd) in the vicinity
of the grain boundary. Figure 3 also shows some relatively weak effects associated with
the crystallographic anisotropy of the material. These effects are more strongly pronounced
in the case of large grains where the formation of regions of enhanced swelling near grain
boundaries is associated with the one-dimensional anisotropic transport of interstitial atoms
by mobile clusters.
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Probably the most interesting conclusion following the analysis of curves shown in figure
2 and the two-dimensional contour maps shown in figure 3 is that the scattering of mobile
clusters by grain boundaries gives rise to a dramatic increase of the limit of saturation of
swelling in comparison with the case where cavities grow in the field of randomly distributed
dislocations. The fact that scattering by grain boundaries cannot be described by the mean-
field approximation results in the formation of regions where profiles of swelling are highly
inhomogeneous and where the radius of cavities corresponding to the saturation of swelling by
more than an order of magnitude exceeds the maximum size of cavities estimated on the basis
of the mean-field approach. For example, for the grain shown in figure 3(b), the maximum
size of cavities is approximately 10 times the mean-field value. This corresponds to a 103

increase in the swelling saturation limit in comparison with the mean-field estimate. There is
no doubt that the topology of grain boundaries (and, in fact, other defects, the segregation of
which leads to the formation of planar walls) in a real material is more complex than that of
a network of spherical grains considered in the above analysis. However, our analysis shows
that the increase of the swelling saturation limit is not associated with a particular choice of the
shape of grain boundaries, but rather with the functional form of formula (5). It is the topology
of the distribution of extended lattice defects in the material that, in accordance with equation
(5), determines the maximum size of cavities. In the case of scattering of mobile interstitial
clusters by three-dimensional spherical cavities and two-dimensional dislocation lines, where
the mean-field treatment of the problem is fully applicable, swelling saturates at relatively low
doses corresponding to the maximum size of growing cavities amax ∼ d. In the case of grain
boundaries (and dislocation walls) the one-dimensional nature of defect structures leads to the
breakdown of the low-density approximation (3) and to the substantial increase of the limit of
saturation of swelling. In this case, provided that the growth rates given by equations (4) and
(5) do not compensate each other exactly, the rate of swelling is determined by the growth of
a relatively small number of ‘favourably’ positioned cavities, resulting in the linear increase
of the total volume of cavities as a function of the irradiation dose.

4. Summary

In this paper we considered effects associated with the violation of the low-density
approximation of the statistical theory of scattering in the case of interaction of mobile
interstitial clusters with grain boundaries. By analysing the kinetics of growth of cavities
using a simple model of a spherical grain we showed that the limit of saturation of swelling
is strongly dependent on the topology of the defect structure of the material. This limit may
exceed by several orders of magnitude the limit given by the mean-field approximation.

This work was jointly funded by the UK Department of Trade and Industry and by EURATOM.
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discussions with D J Bacon, Yu N Osetsky, A A Semenov, B N Singh and C H Woo.
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